Prestiti e agevolazioni per le imprese

Siamo operativi in tutta Italia

Spin control in reduced-dimensional chiral perovskites

Finanziamenti – Agevolazioni

Siamo operativi in tutta Italia

  • 1.

    Zhang, C. et al. Magnetic field effects in hybrid perovskite devices. Nat. Phys. 11, 427–434 (2015).

    Article  Google Scholar 

  • 2.

    Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).

    Article  Google Scholar 

  • 3.

    Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).

    ADS  Article  Google Scholar 

  • 4.

    Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    ADS  Article  Google Scholar 

  • 5.

    Zhai, Y. et al. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    ADS  Article  Google Scholar 

  • 6.

    Kim, M., Im, J., Freeman, A. J., Ihm, J. & Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

    ADS  Article  Google Scholar 

  • 7.

    Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).

    ADS  Article  Google Scholar 

  • 8.

    Mosconi, E., Etienne, T. & De Angelis, F. Rashba band splitting in organohalide lead perovskites: bulk and surface effects. J. Phys. Chem. Lett. 8, 2247–2252 (2017).

    Article  Google Scholar 

  • 9.

    Pulizzi, F. Spintronics. Nat. Mater. 11, 367 (2012).

    ADS  Article  Google Scholar 

  • 10.

    Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    ADS  Article  Google Scholar 

  • 11.

    Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    ADS  Article  Google Scholar 

  • 12.

    Ghali, M., Ohtani, K., Ohno, Y. & Ohno, H. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat. Commun. 3, 661 (2012).

    ADS  Article  Google Scholar 

  • 13.

    Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    ADS  Article  Google Scholar 

  • 14.

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    ADS  Article  Google Scholar 

  • 15.

    Stranks, S. D.et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 2013).

    ADS  Article  Google Scholar 

  • 16.

    Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

    Article  Google Scholar 

  • 17.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    ADS  Article  Google Scholar 

  • 18.

    Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    ADS  Article  Google Scholar 

  • 19.

    Eperon, G. E.et al. Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 2016).

    ADS  Article  Google Scholar 

  • 20.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    ADS  Article  Google Scholar 

  • 21.

    Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    ADS  Article  Google Scholar 

  • 22.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11, 872–877 (2016).

    ADS  Article  Google Scholar 

  • 23.

    Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    ADS  Article  Google Scholar 

  • 24.

    Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    ADS  Article  Google Scholar 

  • 25.

    Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photon. 9, 687–694 (2015).

    ADS  Article  Google Scholar 

  • 26.

    Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    ADS  Article  Google Scholar 

  • 27.

    Sun, D. et al. Spintronics of organometal trihalide perovskites. Preprint at https://arxiv.org/abs/1608.00993 (2016).

  • 28.

    Kepenekian, M. et al. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9, 11557–11567 (2015).

    Article  Google Scholar 

  • 29.

    Canneson, D. et al. Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett. 17, 6177–6183 (2017).

    ADS  Article  Google Scholar 

  • 30.

    Hsiao, Y. C., Wu, T., Li, M. & Hu, B. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv. Mater. 27, 2899–2906 (2015).

    Article  Google Scholar 

  • 31.

    Fu, M. et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 17, 2895–2901 (2017).

    ADS  Article  Google Scholar 

  • 32.

    Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    Article  Google Scholar 

  • 33.

    Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    Article  Google Scholar 

  • 34.

    Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    ADS  Article  Google Scholar 

  • 35.

    Riehl, J. P. & Richardson, F. S. Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1–16 (1986).

    Article  Google Scholar 

  • 36.

    Lightner, D. A. & Gurst, J. E. Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy Ch. 3 (Wiley, New York, NY, 2010).

    Google Scholar 

  • 37.

    Ben-Moshe, A., Teitelboim, A., Oron, D. & Markovich, G. Probing the interaction of quantum dots with chiral capping molecules using circular dichroism spectroscopy. Nano Lett. 16, 7467–7473 (2016).

    ADS  Article  Google Scholar 

  • 38.

    Schellman, J. A. & Oriel, P. Origin of the cotton effect of helical polypeptides. J. Chem. Phys. 37, 2114–2124 (1962).

    ADS  Article  Google Scholar 

  • 39.

    Slavney, A. H. et al. Chemical approaches to addressing the instability and toxicity of lead-halide perovskite absorbers. Inorg. Chem. 56, 46–55 (2017).

    Article  Google Scholar 

  • 40.

    Jiang, C. et al. Zeeman splitting via spin-valley-layer coupling in bilayer MoTe2. Nat. Commun. 8, 802 (2017).

    ADS  Article  Google Scholar 

  • 41.

    Hilborn, R. C. Einstein coefficients, cross-sections, F values, dipole-moments, and all that. Am. J. Phys. 50, 982–986 (1982).

    ADS  Article  Google Scholar 

  • Source

    “https://www.nature.com/articles/s41566-018-0220-6”
    Pubblichiamo solo i migliori articoli della rete. Clicca qui per visitare il sito di provenienza. SITE: the best of the best ⭐⭐⭐⭐⭐

    La rete Adessonews è un aggregatore di news e replica gli articoli senza fini di lucro ma con finalità di critica, discussione od insegnamento, come previsto dall’art. 70 legge sul diritto d’autore e art. 41 della costituzione Italiana. Al termine di ciascun articolo è indicata la provenienza dell’articolo. Per richiedere la rimozione dell’articolo clicca qui

    Sistema “Salva Casa”

    anche per non bancabiliSiamo operativi in tutta Italia

    La rete Adessonews è un aggregatore di news e replica gli articoli senza fini di lucro ma con finalità di critica, discussione od insegnamento,

    come previsto dall’art. 70 legge sul diritto d’autore e art. 41 della costituzione Italiana. Al termine di ciascun articolo è indicata la provenienza dell’articolo.

    Per richiedere la rimozione dell’articolo clicca qui